

Workshop "Digital Tools for Solar Thermal Plant Monitoring"

Daniel Tschopp (AEE INTEC) & SunPeek Team

AEE – INSTITUTE FOR SUSTAINABLE TECHNOLOGIES

www.aee-intec.at

Online Workshop

Digital Tools for Solar Thermal Plant Monitoring

25 June 2024, 2 – 4 pm (CEST, UTC+2)

AEE INTEC

IN COLLABORATION WITH SUNPEEK DEVELOPMENT TEAM

Agenda

Digital Tools for Solar Thermal Plant Monitoring

A Handbook for Plant Operators and Associated Stakeholders

Version 1.0 (June 2024

Handbook "Digital Tools for Solar Thermal Plant Monitoring" (~15 min.) Philip Ohnewein (AEE INTEC)

"Speed Dating" of selected tools (~30 min.) 2 AEE INTEC + SOLID

SunPeek Live Demo + Discussion (~30 min.) 3 Marnoch Hamilton-Jones (AEE INTEC)

Further developments, Q&A (~30 min.) 4 All

www.aee-intec.at

AEE – INSTITUTE FOR SUSTAINABLE TECHNOLOGIES

Workshop Series "Digitalization of Solar Thermal Plants"

- users
- compagnies and stakeholders

SunPeek Open Source Software (Online)

10 - 11 April, 2024 SunPeek Exhibition Booth at ISEC 2024

www.aee-intec.at

AEE – INSTITUTE FOR SUSTAINABLE TECHNOLOGIES

Focus: Demonstrate how to use digital tools and methods for the monitoring of (large-scale) solar thermal plants & give support for SunPeek

• Target group: Operators of large-scale solar thermal plants and associated

SunPeek Eco System

Initiators

Steering Committee & Maintainers

www.aee-intec.at

Applied CPS Project

Agency

The project <u>Applied-CPS</u> (Applied Cyber-Physical Systems) is an Austrian research project of the Digital Europe Programme, funded by the European **Commission and the Austrian Research Promotion**

Project duration: 2022/09 to 2025/08

Applied-CPS offers tailored services for SME within the European Union to support the implementation of cyber-physical systems (CPS)

Services up to 40 k€ are fully funded! Please contact us if you are interested! (limited resources available)

Organizational issues

- The workshop will not be recorded.
- Slides and additional material will be distributed after the workshop. Please feel free to share them!
- After each session, there is some time for longer questions and discussion.
- You may ask shorter questions during the sessions directly to the presenter or using the "Chat" function in MS Teams
- Please register through the Applied CPS website if you haven't done this yet: https://www.applied-cps.at/event_kalender/digital-tools-for-solarthermal-plant-monitoring/

Brief Introduction Round

AEE – INSTITUTE FOR SUSTAINABLE TECHNOLOGIES

www.aee-intec.at

Contact

- contact **Daniel Tschopp** (<u>d.tschopp@aee.at</u>)
- SunPeek General Questions: sunpeek@sunpeek.org
- SunPeek Support: <u>support@sunpeek.org</u>
- https://gitlab.com/sunpeek/

For questions regarding Applied CPS (in particular Service Offers), please

For specific requests / problems / bugs, please open issues in

Questions

www.aee-intec.at

AEE – INSTITUTE FOR SUSTAINABLE TECHNOLOGIES

"Digital Tools" Handbook

Digital Tools for Solar Thermal Plant Monitoring

A Handbook for Plant Operators an Associated Stakeholders

Version 1.0 (June 2024

Philip Ohnewein (AEE INTEC)

2 AEE INTEC + SOLID

SunPeek Live Demo + Discussion (~30 min.) 3 Marnoch Hamilton-Jones (AEE INTEC)

Recent developments, Q&A (~30 min.) 4 All

www.aee-intec.at

AEE – INSTITUTE FOR SUSTAINABLE TECHNOLOGIES

- Handbook "Digital Tools for Solar Thermal Plant Monitoring" (~15 min.)
 - "Online speed dating" of selected tools (~30 min.)

International Standards, SunPeek

AEE INTEC

AEE INTEC

ISO 24194 "Solar energy — Collector fields — Check of performance"

- arrays \rightarrow first standard targeting collector arrays in operation
 - First published in 05/2022 \rightarrow currently ISO 24194:2022 + amendment (Amd 1:2024) —
 - Collaboration between ISO and CEN (European Committee for Standardization) ____
 - Plays a key role for on-going operational monitoring and guarantee procedures _____
 - Bankability and trust in large-scale installations ____
- Specifies methods how to compare measured output with its target:
 - Power Check \rightarrow Denmark, IEA SHC Task 45 & 55 _
 - Daily Yield Check
 - Annual Yield Check (in preparation)
- How to apply in practice?
 - Guide to ISO 24194:2022 Power Check, Task 68

International standard that focuses on the performance check of solar thermal collector

ISO 24194:2022 "Check of Performance"

 New ISO standard for assessing performance of solar thermal collector fields / plants.

- ✓ **In-situ**, for plants in operation!
- ✓ Refers to ISO 9806 (single collector lab tests)
- ✓ Refers to ISO 9060 (instruments for solar radiation)
- ✓ Refers to ISO 9488 (solar vocabulary)

• Applicable **Collector types**:

- ✓ Glazed flat plate collectors
- ✓ Evacuated tube collectors
- ✓ Tracking, concentrating collectors

Defines 2 methods on paper:

- ✓ Power Check
- ✓ Daily Yield Check

✓ Revision: Annual Yield Guarantee

- ✓ TC180 / SC4 / WG4
- ✓ Lead by M. Liu & S. Abrecht

AEE INTEC

Solar energy — Collector fields — Check of performance

(ISO 24194:2022)

Sonnenergie — Kollektorfelder — Überprüfung der Leistungsfähigkeit (ISO 24194:2022)

Energie solaire — Champs de capteurs — Vérification de la performance (ISO 24194:2022)

Life cycle

Now

Published ISO 24194:2022

Stage: 60.60 ~

Corrigenda / Amendments

Under development ISO 24194:2022/Amd 1

General information

Status : Published Publication date : 2022-05 Stage : International Standard published [60.60]

Edition : 1 Number of pages : 30

Technical Committee : ISO/TC 180/SC 4 ICS : 27.160

SunPeek Power Check → ISO 24194

AEE INTEC

www.aee-intec.at

AEE – INSTITUTE FOR SUSTAINABLE TECHNOLOGIES

"Digital Tools for Solar Thermal Plant Monitoring" A Handbook for Plant Operators and Associated Stakeholders

Digital Tools for Solar Thermal Plant Monitoring

A Handbook for Plant Operators and Associated Stakeholders

Version 1.0 (June 2024)

www.aee-intec.at

AEE INTEC

AEE – INSTITUTE FOR SUSTAINABLE TECHNOLOGIES

Download: https://doi.org/10.5281/zenodo.12523699

Authors

Daniel Tschopp (AEE INTEC) Philip Ohnewein (AEE INTEC) Lukas Feierl (SOLID Solar Energy Systems GmbH) Marnoch Hamilton-Jones (AEE INTEC)

Acknowledgements

This handbook was supported and made available by DIH (Digital Innovation Hub) Süd in collaboration with the Austrian Climate and Energy Fund (FFG 884622, DIH.03-23.AF.098-01). The authors would like to express their gratitude to the SunPeek developers for their valuable contributions to this work.

Copyright

Creative Commons Attribution Share Alike 4.0 International (CC BY SA 4.0)

Citation (APA)

Tschopp, D., Ohnewein, P., Feierl, L., Hamilton-Jones, M. (2024). Digital Tools for Solar Thermal Plant Monitoring. A Handbook for Plant Operators and Associated Stakeholders. Version 1.0 (June 2024). Graz, DIH Süd, doi: 10.5281/zenodo.12523699

Source title page: starline / Freepik, Picfly.at Thomas Eberhard

"Digital Tools" Handbook

Digital Tools for Solar Thermal Plant Monitoring

A Handbook for Plant Operators and Associated Stakeholders

Version 1.0 (June 2024)

AEE – INSTITUTE FOR SUSTAINABLE TECHNOLOGIES

Download: https://doi.org/10.5281/zenodo.12523699

Purpose

- Guide for plant operators & stakeholders to effectively monitor solar thermal plants.
- Focus is on solar *collector fields*, not single arrays.
- Overview of digital tools: software, methods, datasets.
- Focus on open-source tools & open datasets.

Acknowledgements

- Supported by DIH (Digital Innovation Hub) Süd
- Supported by Austrian Climate and Energy Fund
- Cooperation with team of <u>SunPeek</u> open-source software

1	. Mea	surement setup and data handling
	1.1	Literature review
	1.2	Sensors
	1.3	Data gathering
	1.4	Data validation
2	2 Metł	nods and key figures
	2.1	Methods
	2.2	Key figures
3	Softv	vare tools and open datasets
	3.1	Software tools for solar thermal plants
	3.2	Open datasets and for solar thermal plants
	3.3	Software tools for solar photovoltaic plants
	3.4	Software tools for SCADA and industrial automation
	3.5	General visualization, monitoring and IoT platforms
4	SunP	eek user guide
	4.1	What is SunPeek?
	4.2	Quick start
	4.3	About SunPeek
	4.4	Plant configuration
	4.5	Data upload and inspection
	4.6	Power Check application
	4.7	Power Check implementation in SunPeek

AEE INTEC

AEE – INSTITUTE FOR SUSTAINABLE TECHNOLOGIES

Download: https://doi.org/10.5281/zenodo.12523699

.....556111315152024243134343737 374041464750

Sensors

- Practical recommendations for monitoring
- Choice & placement of sensors

Data Gathering

- Sampling rate: at least 1 minute
- Time zones: explicit time zones, or UTC
- Timestamp format: ISO 8601
- Encoding: UTF-8
- Data validation tools & algorithms

1 Mea	surement setup and data handling
1.1	Literature review
1.2	Sensors
1.3	Data gathering
1.4	Data validation
2 Met	hods and key figures
2.1	Methods
2.2	Key figures
3 Soft	ware tools and open datasets
3.1	Software tools for solar thermal plants
3.2	Open datasets and for solar thermal plants
3.3	Software tools for solar photovoltaic plants
3.4	Software tools for SCADA and industrial automation
3.5	General visualization, monitoring and IoT platforms
4 SunF	eek user guide
4.1	What is SunPeek?
4.2	Quick start
4.3	About SunPeek
4.4	Plant configuration
4.5	Data upload and inspection
4.6	Power Check application
4.7	Power Check implementation in SunPeek

AEE INTEC

Download: https://doi.org/10.5281/zenodo.12523699

.....5561113 ISO 980615 ISO 24194: Power Check, Daily Yield Check1520 Most important Key Figures2424283134343737374041464750

1	Mea	surement setup and data handling	5
	1.1	Literature review	5
	1.2	Sensors	6
	1.3	Data gathering	11
	1.4	Data validation	13
2	Metl	hods and key figures	15
	2.1	Methods	15
	2.2	Key figures	20
3	Softv	ware tools and open datasets	24
	3.1	Software tools for solar thermal plants	24
	3.2	Open datasets and for solar thermal plants	28
	3.3	Software tools for solar photovoltaic plants	31
	3.4	Software tools for SCADA and industrial automation	34
	3.5	General visualization, monitoring and IoT platforms	34
4	SunP	eek user guide	37
	4.1	What is SunPeek?	37
	4.2	Quick start	37
	4.3	About SunPeek	40
	4.4	Plant configuration	41
	4.5	Data upload and inspection	46
	4.6	Power Check application	47
	4.7	Power Check implementation in SunPeek	50

AEE INTEC

AEE – INSTITUTE FOR SUSTAINABLE TECHNOLOGIES

Download: https://doi.org/10.5281/zenodo.12523699

.....13151520242431343437374041464750

Solar thermal

- Software tools
- Open datasets

PV

• Software tools

General

- Weather & Irradiance tools, databases & APIs
- Visualization, Monitoring & IoT Platforms

 \rightarrow "Speed Dating" \rightarrow 4 selected tools

1 Mea	surement setup and data handling
1.1	Literature review
1.2	Sensors
1.3	Data gathering
1.4	Data validation
2 Met	hods and key figures
2.1	Methods
2.2	Key figures
3 Softv	ware tools and open datasets
3.1	Software tools for solar thermal plants
3.2	Open datasets and for solar thermal plants
3.3	Software tools for solar photovoltaic plants
3.4	Software tools for SCADA and industrial automation
3.5	General visualization, monitoring and IoT platforms
4 SunP	eek user guide
4.1	What is SunPeek?
4.2	Quick start
4.3	About SunPeek
4.4	Plant configuration
4.5	Data upload and inspection
4.6	Power Check application
4.7	Power Check implementation in SunPeek

AEE INTEC

AEE – INSTITUTE FOR SUSTAINABLE TECHNOLOGIES

Download: https://doi.org/10.5281/zenodo.12523699

"Digital Tools for Solar Thermal Plant Monitoring" A Handbook for Plant Operators and Associated Stakeholders

ZECCO Search records Communities M Download:		
Planned intervention: On Wednesday June 26th 05:30 UTC Zenodo will be unavailable for 10-20 mir	org/10.5281/	zenod
Large-scale solar thermal plants		
Published June 25, 2024 Version Version 1.0 (June 2024)	Report Open	5
Digital Tools for Solar Thermal Plant Monitoring		VIEWS
Tschopp, Daniel ¹ 🔞; Ohnewein, Philip ¹ 🔞; Feierl, Lukas ² 🔞; Hamilton-Jones, Marnoch ¹ 🔞	Show affiliations	
Citation (API): Tschopp, D., Ohnewein, P., Feierl, L., Hamilton-Jones, M. (2024). Digital Tools for Solar Thermal Plant Monitoring. A Handbook for Associated Stakeholders. Version 1.0 (June 2024). Graz, DIH Süd, doi: 10.5281/zenodo.12523699	for Plant Operators and Ve	ersions
Background: Large-scale solar thermal plants are a key technology to provide renewable heat in residential, industrial, and district heating appl	lications with substantial growth	rsion Version 1.0 (June 5281/zenodo.12523699
 worldwide in recent years. Increasing availability of data, performance analytics methods and digitalization technologies offer the opportunity to i standards of the technology. An important milestone is the release of ISO 24194 in 2022, which is the first standard of its kind to target the opera collector arrays. <i>Challenge</i>: To ensure high solar energy yields over the lifespan of the plant, digital monitoring solutions which support automated, cost-eff benchmarking and optimal system operation are needed. The promising developments in this field are not yet fully seized by the stakehole eiged anterprises who exercts collect the stakehole eiged anterprises who exercts collect the release of a lack of avageneese and accessible. target group energies information 	improve quality assurance ating phase of solar thermal 10. alw fective performance Iders, mainly small and medium-	a all versions? You ca 5281/zenodo.1252369 ays resolve to the lates
 Aim: This handbook strives to give an overview of digital tools for solar thermal plant monitoring and addresses typical data requirements and e focuses on open-source software tools. Open-source tools not only decrease licensing costs for users, but also offer the benefit of traceable and when the software is used to check performance guarantees. <i>Target group</i>: The handbook mainly targets plant operators of large-scale solar thermal plants, especially small and medium-sized enterprestakeholders like system designers, collector manufacturers, quality assurance institutions, investors and heat costumers. <i>Scope</i>: The presented digital tools are geared towards large-scale applications, mainly for systems using non-concentrating flat plate collector 	evaluation methods. The work d transparent outcomes, e.g., rises, and additionally associated ectors, with a focus on the	dexed in
collector array (primary loop). One open-source tool, the SunPeek software, is presented in detail. The authors do not claim completeness preference which tools are most suitable.	s of the selected tools nor any Co	ommunities Large-scale s
Structure: The handbook consists of 4 chapters:		_
 Chapter 1 summarizes the required measurement setup and data handling. Chapter 2 introduces common methods and key figures used in digital tools. Chapter 3 gives an overview of digital tools and open data sets. Chapter 4 introduces the SunPeek software, which implements the ISO 24194 Power Check. 		etails 01 01 10.5281/zenodo.12523
Previous work: The handbooks integrates on-going work and discussions with experts from IEA SHC Task 68, and strongly builds on the project	cts HarvestIT and MeQuSo.	source type port
Acknowledgements: This handbook was supported and made available by DIH (Digital Innovation Hub) Süd in collaboration with the Austrian (884622, DIH.03-23.AF.098-01). The authors would like to express their gratitude to the SunPeek developers for their valuable contributions to the	Climate and Energy Fund (FFG nis work. Pu Zei	blisher nodo
Files	Lat En	nguages glish
Handbook Digital Tools Solar Thermal Plant Monitoring.pdf	~	

AEE – INSTITUTE FOR SUSTAINABLE TECHNOLOGIES

Speed Dating

Digital Tools for Solar Thermal Plant Monitoring

A Handbook for Plant Operators and Associated Stakeholders

Version 1.0 (June 2024)

Philip Ohnewein (AEE INTEC)

2 AEE INTEC + SOLID

SunPeek Live Demo + Discussion (~30 min.) 3 Marnoch Hamilton-Jones (AEE INTEC)

Recent developments, Q&A (~30 min.) 4 All

www.aee-intec.at

AEE – INSTITUTE FOR SUSTAINABLE TECHNOLOGIES

- Handbook "Digital Tools for Solar Thermal Plant Monitoring" (~15 min.)
 - "Speed Dating" of selected tools (~30 min.)

Selected Tools

SOLARHEATDATA.EU

www.aee-intec.at

AEE – INSTITUTE FOR SUSTAINABLE TECHNOLOGIES

https://solarkeymark.eu/calculation-tools/

https://solarheatdata.eu/

https://thingsboard.io/

https://pvlibpython.readthedocs.io/en/stable/

AEE INTEC

- Download: <u>https://solarkeymark.eu/calculation-tools/</u>
- Excel file + VBA code
- Current version: 6.2

Official SolarKeymark calculation tool

Scope

AEE INTEC

- Calculates annual solar yield (kWh/m²_{gr}).
 Used in SolarKeymark datasheet, page 2.
 4 locations, and 3 temperature levels each.
- Simplified assumptions (hourly computation, load all the time, constant collector temperature, etc).
- Supports different collector orientations and tracking.
- Supports providing own location, collector parameters, and temperature levels.

ure ϑm, based Stockl 5°C 25°C 50°	l on ISO	2016- 9806 T	04-0 est F		
ure ϑ m, based Stockl 5°C 25°C 50°	l on ISO	9806 T	est F		
Stockl 5°C 25°C 50°	holm °C 75°C	<u>۱</u>			
5°C 25°C 50°	°C 75°C		Würzb		
179 1'306 1'0		25°C	50°		
175 1500 10	19 788	1'406	1'09		
		-	_		
		-			
		-			
65 625 48	8 377	673	52		
e - 15°; rounded	to nearest	t 5°)			
1166 kV	1166 kWh/m ²				
7.5	°C		9.0°		
South	S	outh,			
	1/306 1/0 1/306 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0	1'306 1'019 788 1'306 1'019 788 1'1019 788 1000 1000 1000 <	1/20 1/019 788 1/406 1/306 1/019 788 1/406 1 1 1 1 <t< td=""></t<>		

The collector is operated at constant temperature ϑ m (mean of in- and outlet temperatures). The calculation of the annual collector performance is performed with the official Solar Keymark spreadsheet tool Scenocalc Ver. 5.01 (July 2015). A detailed description of the calculations is available at www.solarkeymark.org/scenocalc

Annex to Solar Keymark Certificate							icence Number 011-7S2636 F				
Summary of EN ISO 9806 Test Results						Issued			2016-0	04-06	
Collector test sta	Indard	EN ISO	9806						•		
Licence holder	TIGI LTD.					Country	Israel				
Brand (optional)						Web	www.tig	isolar.co	m		
Street, Number	12 Modi-in St.					E-mail	info@tig	isolar.co	m		
Postcode, City	IL-4927161, Petah Ti	kva				Tel	+972	3 63536	26		
Collector Type						Evacuate	ed tubular	· collecto	r		
							Pow	er outpu	t per coll	ector	
		A _G)	_				Gb = 8	350 W/m ²	; Gd = 150	W/m²	
		oss ea (oss igth	oss dth	oss ight			ზm	- მ а		
		Gr	Gr len	, Gr	Gr	ОК	10 K	30 K	50 K	70 K	130 k
Collector name		m²	mm	mm	mm	W	W	W	W	W	W
TIGI HC1-A		2.09	2'027	1'030	195	1'416	1'375	1'291	1'201	1'106	791
			ļ						ļ	 	
											<u> </u>
Power output per m	² gross area					678	659	618	575	530	379
Performance parame	eters test method		Steady s	tate - out	door						
Performance parame	eters (related to AG)		n0.hem	a1	a2						
Units			-	W/(m ² K)	$W/(m^2K^2)$						
Test results			0.678	1.900	0.003						
Incidence angle mod	ifier test method		Steady	tate - out	loor						
Bi-directional incide	nce angle modifiers	Yes	cicady s	une out							
Incidence angle mod	ifier	Angle	10°	20°	30°	40°	50°	60°	70°	80°	90°
Transversal		K _{AT coll}	0.99	0.98	0.96	0.93	0.88	0.78	0.65	0.38	0.00
Longitudinal		K _{θL coll}	1.00	0.99	0.98	0.95	0.89	0.80	0.65	0.40	0.00
Fluid for testing							Water-G	lycole			
Flow rate for testing	(per gross area, AG)						dm/dt	.,	0.021	kg/(sm ²)
Maximum temperat	ure difference for the	ermal per	formance	e calculati	ons		(ϑϑ_)_	hav	130	K	,
Standard stagnation	temperature (G = 10	00 W/m ²	; ϑ _a = 30 °	°C)			ven - an	IdA	150	°C	
Effective thermal car	oacity (per gross area	, AG)	u	-			C/m ²		6.1	kJ/(Km ²)	
Maximum operating	temperature						ϑ _{max on}		139	°C	
Maximum operating	pressure						p _{max.op}		800	kPa	
Testing laboratory	SPF, CH-8640 Ranner	swil					www.snf	.ch	•	•	
Test report(s)	C1679LPEN						Dated		31.03.20	016	
	C1679LPEN								31.03.20	016	
							1				

AEE – INSTITUTE FOR SUSTAINABLE TECHNOLOGIES

Annex to Solar Keymark Certifica	ate					Licend	ce Nun	nber		011-7	S26 3
Supplementary Information Issued									2016-04-0		
Annual collector output in kWh	/colle	ctor at	mean	fluid t	empe	rature	 მო, ხ	ased o	n ISO	9806 T	est F
Standard Locations		Athens			Davos		S	tockhol	Würzl		
Collector name	25°C	50°C	75°C 1'455	25°C	50°C 1'473	75°C	75°C 25°C	50°C 1'019	75°C 788	25°C 50	
TIGI HC1-A	2'201	1'808		1'812		1'179				1'406	1'09
		_									
Annual output per m ² gross area	1'054	866	697	868	706	565	625	488	377	673	52
Fixed or tracking collector			Fib	xed (sloj	oe = lati	itude - 1	5°; roun	ided to i	nearest	5°)	
Annual irradiation on collector plane	17	65 kWh	/m²	17	14 kWh	/m²	1166 kWh/m ²			1244 kV	
Mean annual ambient air temperature		18.5°C			3.2°C			7.5°C			9.0
Collector orientation or tracking mode	S	South, 25°			South, 30°			outh, 4	South,		
The collector is exercised at constant to r		9		in and	a sublact t		turner) 7			of the or	

The collector is operated at constant temperature ϑ m (mean of in- and outlet temperatures). The calculation of the annual collector performance is performed with the official Solar Keymark spreadsheet tool Scenocalc Ver. 5.01 (July 2015). A detailed description of the calculations is available at www.solarkeymark.org/scenocalc

Official SolarKeymark calculation tool

Status

AEE INTEC

- Well-established and *accepted tool* in SolarKeymark & most of the European solar thermal world.
- Originally developed by *RISE 2019* in project QAIST.
- Supports a variety of collector types, but not yet PVT.
- Rework / Update planned (Pro-Sol-Netz project) towards supporting parabolic trough / *PTC and Fresnel* collectors.

Annex to Solar Keymark Certifica		Licend	ce Nun	011-7S263 2016-04-0								
Supplementary Information		Issue	d									
Annual collector output in kWh	/colle	ctor at	mean	fluid t	empe	rature	 მო, ხ	ased o	n ISO	9806 T	est F	
Standard Locations		Athens		Davos			S	tockhol	Würzb			
Collector name භී m	25°C	50°C	75°C	25°C	50°C	75°C	25°C	50°C	75°C	25°C	50°	
TIGI HC1-A	2'201	1'808	1'455	1'812	1'473	1'179	1'306	1'019	788	1'406	1'09	
Annual output per m ² gross area	1'054	866	697	868	706	565	625	488	377	673	525	
Fixed or tracking collector			Fib	ked (sloj	oe = lati	tude - 1	5°; roun	ded to r	nearest	5°)		
Annual irradiation on collector plane	170	65 kWh,	/m²	17	1714 kWh/m²			1166 kWh/m ²			1244 kW	
Mean annual ambient air temperature		18.5°C			3.2°C			7.5°C	9.0°			
Collector orientation or tracking mode	S	South, 25° So			outh, 3	0°	S	outh, 4	5°	S	outh,	
Annual irradiation on collector plane Mean annual ambient air temperature Collector orientation or tracking mode	170 S	1765 kWh/m²1714 kWh/m²18.5°C3.2°CSouth, 25°South, 30°			110 S	66 kWh 7.5°C outh, 4!	1244 k 9.0 South					

The collector is operated at constant temperature ϑ m (mean of in- and outlet temperatures). The calculation of the annual collector performance is performed with the official Solar Keymark spreadsheet tool Scenocalc Ver. 5.01 (July 2015). A detailed description of the calculations is available at www.solarkeymark.org/scenocalc

ScenoCalc & SunPeek

Similarities with SunPeek

- Both are based on ISO 9806 standard / SolarKeymark.
- Both support a variety of *collector types* (flat plate, concentrating / tracking, air). Both aim at improving support for concentrating, PVT and other collector types.
- Both support SST and QDT collector data sheets

Differences to SunPeek

- SunPeek is a *performance monitoring* tool for plants in operation. ScenoCalc is a *yield estimation* tool, converting collector parameters into a projected solar energy yield.
- SunPeek processes in-situ *measurement data* from solar thermal plants. ScenoCalc does not, it's not a monitoring tool.
- ScenoCalc is not backed by an *open-source* project. Maintenance and Governance are somewhat undefined.

AEE INTEC

SunPeek

Annual output per m ² gross area	1'054	866	697	868	706	565	625	488	377	673	
Fixed or tracking collector	Fixed (slope = latitude - 15°; rounded to nearest 5°)										
Annual irradiation on collector plane	1765 kWh/m ²		/m²	1714 kWh/m²			1166 kWh/m ²			124	μ
Mean annual ambient air temperature	18.5°C		3.2°C			7.5°C					
Collector orientation or tracking mode	South, 25°		South, 30°			S	S	0			

The collector is operated at constant temperature ϑ m (mean of in- and outlet temperatures). The calculation of the annual collector performance is performed with the official Solar Keymark spreadsheet tool Scenocalc Ver. 5.01 (July 2015). A detailed description of the calculations is available at www.solarkeymark.org/scenocalc

From: https://pvlib-python.readthedocs.io/en/stable/

Anderson, K., Hansen, C., Holmgren, W., Jensen, A., Mikofski, M., and Driesse, A. "pvlib python: 2023 project update." Journal of Open Source Software, 8(92), 5994, (2023). DOI: 10.21105/joss.05994.

pvlib **python** is a community developed toolbox that provides a set of functions and classes for **simulating the performance of photovoltaic energy systems** and accomplishing related tasks.

pvlib **python** is a community developed toolbox that provides a set of functions and classes for **simulating the performance of photovoltaic energy systems** and accomplishing related tasks.

 \Rightarrow PV and solar-thermal share **irradiation calculations** (incl. Tracking)

 \Rightarrow PV and solar-thermal need to handle **sensor and measurement data** (PVAnalytics)

Time and time zones

Clear sky

Classes

Irradiance

irradiance
Transposition models
DNI estimation models
Clearness index models

PV Modeling

Tracking
 IO Tools
 Forecasting
 ModelChain
 Bifacial

Scaling

Read the Docs

Effects on PV System Output

Solar Position
 Clear sky

Airmass and atmospheric m

Methods for irradiance calculations

pvlib.pvsystem.PVSystem.g pvlib.pvsystem.PVSystem.g pvlib.pvsystem.PVSystem.g pvlib.tracking.SingleAvisTra Decomposing and combini

Forecasting

Decomposing and combining irradiance

	irradiance.get_extra_radiation (datetime_or_o	doy) Determine extraterrestrial radiation from day of year.
	irradiance.aoi (surface_tilt,)	Calculates the angle of incidence of the solar vector on a surface.
	irradiance.aoi_projection (surface_tilt,)	Calculates the dot product of the sun position unit vector and the surface normal unit vector; in other words, the cosine of the angle of incidence.
odels	irradiance.poa_horizontal_ratio ()	Calculates the ratio of the beam components of the plane of array irradiance and the horizontal irradiance.
	<pre>irradiance.beam_component (Surface_tilt,)</pre>	Calculates the beam component of the plane of array irradiance.
t_imadiance	irradiance.poa_components (a0i, dni,)	Determine in-plane irradiance components.
stjani Itjam ker.getjirradiance	irradiance.get_ground_diffuxe (surface_tilt, gh	Estimate diffuse irradiance from ground hi) reflections given irradiance, albedo, and surface tilt.
g	irradiance.dni (ghi, dhi, zenith[,])	Determine DNI from GHI and DHI.
	Transposition models	Determine total in-plane irradiance and its beam, sky
	irradiance.get_total_irradiance []	specified sky diffuse irradiance model.
ıt	irradiance.get_sky_diffuse (surface_tilt,)	Determine in-plane sky diffuse irradiance component using the specified sky diffuse irradiance model.
	irradiance.isotropic (surface_tilt, dhi)	Determine diffuse irradiance from the sky on a tilted surface using the isotropic sky model.
	irradiance.perez (surface_tilt, [, model,])	Determine diffuse irradiance from the sky on a tilted surface using one of the Perez models.
	irradiance.haydavies (surface_tilt,[,])	Determine diffuse irradiance from the sky on a tilted surface using Hay & Davies' 1980 model

Determine diffuse irradiance from the sky on a tilted

surface using Klucher's 1979 model

Many calculations regarding irradiance (AOI, extraterrestrial irradiation, solar time, decompositions, etc.)

Link: https://pvlib-

python.readthedocs.io/en/v0.9.0/api.html#methods-for-irradiancecalculations

irradiance.klucher (surface_tilt, ...)

~

~

~

~

 \sim

~

~

č

∰pvlib

User Guide Example Gallery API reference What's New Contributing

Q Search the docs ... ADR Model for PV Module Efficiency Agrivoltaic Systems Modelling Bifacial Modeling Irradiance Decomposition

Diffuse Fraction Estimation

Irradiance Transposition
I-V Modeling
Reflections
Shading
Soiling
Solar Position
Solar Tracking
Spectrum
System Models

DIRINT

Erbs Boland

🖸 🖹 G 🏶

Including nice code examples: Estimate diffuse irradiation based on different estimation models

Link: <u>https://pvlib-</u> python.readthedocs.io/en/stable/gallery/irradiancedecomposition/plot_diffuse_fraction.html#

Copyright © SunPeek Contributors

200

50

[₂/// IHD 100

~

~

~

~

 \sim

~

~

č

∰pvlib

User Guide Example Gallery API reference What's New Contributing

Q Search the docs ... ADR Model for PV Module Efficiency Agrivoltaic Systems Modelling Bifacial Modeling Irradiance Decomposition

Diffuse Fraction Estimation

Irradiance Transposition
I-V Modeling
Reflections
Shading
Soiling
Solar Position
Solar Tracking
Spectrum
System Models

DIRINT

Erbs Boland

🖸 🖹 G 🏶

Including nice code examples: Estimate diffuse irradiation based on different estimation models

Link: <u>https://pvlib-</u> python.readthedocs.io/en/stable/gallery/irradiancedecomposition/plot_diffuse_fraction.html#

Copyright © SunPeek Contributors

200

50

[₂/// IHD 100

🖸 🔶 API Reference Example Gallery Release Notes **PVAnalytics** Now we run the data shift algorithm (with default parameters) on the data stream, using Q. Search the docs ... pvanalytics.quality.data_shifts.detect_data_shifts(). We plot the predicted time series segments, based on algorithm results. Clearsky Detection shift_mask = ds.detect_data_shifts(df['value']) Clipping shift_list = list(df[shift_mask].index) Identify shifts in measurement data edges = [df.index[0]] + shift_list + [df.index[-1]] Day-Night Masking fig, ax = plt.subplots() for (st, ed) in zip(edges[:-1], edges[1:]): Gaps (PVAnalytics) ax.plot(df.loc[stred, "value"]) plt.show() Irradiance-Quality Metrics # We zoom in around the changepoint to more closely show the data shift. Time # series segments pre- and post-shift are color-coded. Orientation edges = [pd.to_datetime("10-15-2015")] + shift_list + \ Outliers [pd.to datetime("11-15-2015")] PVReets QA Examples fig, ax = plt.subplots() for (st, ed) in zip(edges[:-1], edges[1:]): ax.plot(df.loc[st:ed, "value"]) Data/Time Shifts plt.xticks(rotation-45) Data Shift Detection & Filtering plt.show() Identifying and estimating time shifts System Weather 4000 1 1 1 We filter the time series by the detected changepoints, taking the longest continuous segment free of data shifts, using pvanalytics.quality.data_shifts.get_longest_shift_segment_dates(). The trimmed time series is then plotted. Link: start_date, end_date = ds.get_longest_shift_segment_dates(df['value']) https://pvanalytics.readthedocs.io/en/stable/genera df['value'][start_date:end_date].plot() plt.show() ted/gallery/shifts/data-shifts.html

- Open Source Python project
 - \Rightarrow Role model for SunPeek
 - \Rightarrow Used for some calculations
- Many functions that can be used for solar-thermal: (even though developed for PV)
 - Irradiation & irradiation conversion (pvlib)
 - Fetching weather data (pvlib)
 - Plausibility checks (PVAnalytics)

SunPeek

Demo

Copyright © SunPeek

What is SunPeek?

SunPeek is the quasistandard to apply the ISO 24194

Free and easy to use!

Usage of SunPeek

Images ©SOLID Solar Energy Systems

Collector Guarantees

Does the collector perform as specified?

Performance Monitoring

How does collector performance changes over time?

How does it work?

ISO 24194 – Power Check compares array performance:

Actual performance	Estimated performance
Based on measurements:	Based on Collector-Keymark-Equation:
$\dot{Q} = c_p \dot{m} (v_{out} - v_{in})$	$\dot{Q} = A_{GF} \cdot \left[\eta_{0,hem} K_{hem}(\theta) G_{hem} - a_1(\vartheta_m - \vartheta_a) - a_2(\vartheta_m - \vartheta_a)^2 - a_5\left(\frac{d\vartheta_m}{dt}\right) \right] \cdot f_{safe}$
1h averages	1h averages

Compare only for valid timestamps (operation conditions close to stable full power operation)

How does it work?

Why open-source?

✓ Accessibility

Implementing the ISO needs considerable knowledge and ressources. With SunPeek, the method is accessible to everyone without any work

✓ Transparency

Guarantees must be transparent, so all parties can check the results independently.

With SunPeek, everyone works with the

✓ Consistency

Results must be consistent and truthful to the ISO. With SunPeek, everyone relies on the same code.

Software & Licenses

web UI

Graphical user interface. Interactive use in browser.

BSD-3 Clause

- "Permissive", virtually no restrictions
- Used in similar open-source projects (e.g. pvlib).
- Simplifies integration with own software.

Restful API, Automate with other software tools.

web API

I

Python package Algorithm development. ntegrate with other projects.

Standardized distribution

and installation.

Backend: LGPL (GNU General Public License) .

"Weakly Protective"

- Must release changes under same license.
- Ensures consistent implementation of ISO 24194.

SunPeek Information

\checkmark	Support	support@sunpeek.org
\checkmark	Software Repository	<u>https://gitlab.com/sunpeek/</u>
\checkmark	Public Demo	https://demo.sunpeek.org/
\checkmark	Open Dataset	https://doi.org/10.5281/zenodo.7741083
\checkmark	Data-in-Brief Article	https://doi.org/10.1016/j.dib.2023.109224
\checkmark	Zenodo Community	https://zenodo.org/communities/sunpeek

SunPeek Demo Server

https://demo.sunpeek.org/

SunPeek

Next Steps & Activities

Copyright © SunPeek

What does that mean for you?

You want to try SunPeek?

Sure, just go to <u>https://demo.sunpeek.org</u> or download the software for free!

You want support setting up your plant?

Contact us! We will help you set up your plant as part of the Applied CPS funding.

You want to join the SunPeek community?

Stay connected and stay tuned for further workshops! We are also always looking for contributors to join us!

You want to join the ISO 24194 discussions?

Contact us! We are happy to include you in the Task 68 work and discussions

Join us!

Be a part of the SunPeek and let's work together for a brighter solar-thermal future

www.sunpeek.org

sunpeek@sunpeek.org

